skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Yaochen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 4, 2026
  2. Free, publicly-accessible full text available November 4, 2026
  3. Free, publicly-accessible full text available November 4, 2026
  4. Free, publicly-accessible full text available November 10, 2026
  5. Free, publicly-accessible full text available July 16, 2026
  6. Causal inference from observational data has attracted considerable attention among researchers. One main obstacle is the handling of confounders. As direct measurement of confounders may not be feasible, recent methods seek to address the confounding bias via proxy variables, i.e., covariates postulated to be conducive to the inference of latent confounders. However, the selected proxies may scramble both confounders and post-treatment variables in practice, which risks biasing the estimation by controlling for variables affected by the treatment. In this paper, we systematically investigate the bias due to latent post-treatment variables, i.e., latent post-treatment bias, in causal effect estimation. Specifically, we first derive the bias when selected proxies scramble both latent confounders and post-treatment variables, which we demonstrate can be arbitrarily bad. We then propose a Confounder-identifiable VAE (CiVAE) to address the bias. Based on a mild assumption that the prior of latent variables that generate the proxy belongs to a general exponential family with at least one invertible sufficient statistic in the factorized part, CiVAE individually identifies latent confounders and latent post-treatment variables up to bijective transformations. We then prove that with individual identification, the intractable disentanglement problem of latent confounders and post-treatment variables can be transformed into a tractable independence test problem despite arbitrary dependence may exist among them. Finally, we prove that the true causal effects can be unbiasedly estimated with transformed confounders inferred by CiVAE. Experiments on both simulated and real-world datasets demonstrate significantly improved robustness of CiVAE. 
    more » « less
    Free, publicly-accessible full text available April 24, 2026
  7. Out-of-distribution (OOD) generalization on graphs aims at dealing with scenarios where the test graph distribution differs from the training graph distributions. Compared to i.i.d. data like images, the OOD generalization problem on graph-structured data remains challenging due to the non-i.i.d. property and complex structural information on graphs. Recently, several works on graph OOD generalization have explored extracting invariant subgraphs that share crucial classification information across different distributions. Nevertheless, such a strategy could be suboptimal for entirely capturing the invariant information, as the extraction of discrete structures could potentially lead to the loss of invariant information or the involvement of spurious information. In this paper, we propose an innovative framework, named Generative Risk Minimization (GRM), designed to generate an invariant subgraph for each input graph to be classified, instead of extraction. To address the challenge of optimization in the absence of optimal invariant subgraphs (i.e., ground truths), we derive a tractable form of the proposed GRM objective by introducing a latent causal variable, and its effectiveness is validated by our theoretical analysis. We further conduct extensive experiments across a variety of real-world graph datasets for both node-level and graph-level OOD generalization, and the results demonstrate the superiority of our framework GRM. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  8. Graph Neural Networks (GNNs) have been widely deployed in various real-world applications. However, most GNNs are black-box models that lack explanations. One strategy to explain GNNs is through counterfactual explanation, which aims to find minimum perturbations on input graphs that change the GNN predictions. Existing works on GNN counterfactual explanations primarily concentrate on the local-level perspective (i.e., generating counterfactuals for each individual graph), which suffers from information overload and lacks insights into the broader cross-graph relationships. To address such issues, we propose GlobalGCE, a novel global-level graph counterfactual explanation method. GlobalGCE aims to identify a collection of subgraph mapping rules as counterfactual explanations for the target GNN. According to these rules, substituting certain significant subgraphs with their counterfactual subgraphs will change the GNN prediction to the desired class for most graphs (i.e., maximum coverage). Methodologically, we design a significant subgraph generator and a counterfactual subgraph autoencoder in our GlobalGCE, where the subgraphs and the rules can be effectively generated. Extensive experiments demonstrate the superiority of our GlobalGCE compared to existing baselines. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  9. Large Language Models (LLMs) have recently transformed both the academic and industrial landscapes due to their remarkable capacity to understand, analyze, and generate texts based on their vast knowledge and reasoning ability. Nevertheless, one major drawback of LLMs is their substantial computational cost for pre-training due to their unprecedented amounts of parameters. The disadvantage is exacerbated when new knowledge frequently needs to be introduced into the pre-trained model. Therefore, it is imperative to develop effective and efficient techniques to update pre-trained LLMs. Traditional methods encode new knowledge in pre-trained LLMs through direct fine-tuning. However, naively re-training LLMs can be computationally intensive and risks degenerating valuable pre-trained knowledge irrelevant to the update in the model. Recently,Knowledge-based Model Editing(KME), also known asKnowledge EditingorModel Editing, has attracted increasing attention, which aims at precisely modifying the LLMs to incorporate specific knowledge, without negatively influencing other irrelevant knowledge. In this survey, we aim at providing a comprehensive and in-depth overview of recent advances in the field of KME. We first introduce a general formulation of KME to encompass different KME strategies. Afterward, we provide an innovative taxonomy of KME techniques based on how the new knowledge is introduced into pre-trained LLMs, and investigate existing KME strategies while analyzing key insights, advantages, and limitations of methods from each category. Moreover, representative metrics, datasets, and applications of KME are introduced accordingly. Finally, we provide an in-depth analysis regarding the practicality and remaining challenges of KME and suggest promising research directions for further advancement in this field. 
    more » « less
  10. Job marketplace is a heterogeneous graph composed of interactions among members (job-seekers), companies, and jobs. Understanding and modeling job marketplace can benefit both job seekers and employers, ultimately contributing to the greater good of the society. However, existing graph neural network (GNN)-based methods have shallow understandings of the associated textual features and heterogeneous relations. To address the above challenges, we propose PLM4Job, a job marketplace foundation model that tightly couples pretrained language models (PLM) with job market graph, aiming to fully utilize the pretrained knowledge and reasoning ability to model member/job textual features as well as various member-job relations simultaneously. In the pretraining phase, we propose a heterogeneous ego-graph-based prompting strategy to model and aggregate member/job textual features based on the topological structure around the target member/job node, where entity type embeddings and graph positional embeddings are introduced accordingly to model different entities and their heterogeneous relations. Meanwhile, a proximity-aware attention alignment strategy is designed to dynamically adjust the attention of the PLM on ego-graph node tokens in the prompt, such that the attention can be better aligned with job marketplace semantics. Extensive experiments at LinkedIn demonstrate the effectiveness of PLM4Job. 
    more » « less